60 bài bác tập Hàm số lượng giác, Phương trình lượng giác có đáp án

Với 60 bài tập Hàm số lượng giác, Phương trình lượng giác gồm đáp án Toán lớp 11 tổng phù hợp 60 bài xích tập trắc nghiệm có lời giải cụ thể sẽ giúp học viên ôn tập, biết cách làm dạng bài bác tập Hàm con số giác, Phương trình lượng giác từ đó đạt điểm cao trong bài xích thi môn Toán lớp 11.

Bạn đang xem: Các bài tập về hàm số lượng giác 11

*

Bài 1: quý giá x ∈ (0,π) thoả mãn đk cos2x + sinx – 1 = 0 là:

*

Lời giải:

Đáp án: A

cos2⁡x + sin⁡x-1 = 0 ⇔ -sin2⁡x+ sin⁡x=0

*

x ∈ (0,π) buộc phải x = π/2 (k=0).

Bài 2: Tập nghiệm của phương trình: 3sin2x - 2√3 sinxcosx - 3cos2x = 0 là:

*

Lời giải:

Đáp án: A

3sin2⁡x - 2√3 sin⁡xcos⁡x - 3 cos2⁡x=0 (1)

Xét cos⁡x=0 (1) ⇔ sin⁡x=0 (vô lý do: sin2⁡x +cos2⁡x=1)

Xét cos⁡x ≠ 0. Phân chia cả nhì vế của (1) cho cos2⁡x. Ta được :

3tan2⁡x-2√3 tan⁡x-3=0

*

Bài 3: Tổng các nghiệm của phương trình cos2x - √3sin2x = một trong những khoảng (0;π) là:

A. 0 B. π C. 2π D. 2π/3

Lời giải:

Đáp án: D

Ta có

cos⁡2x - √3sin⁡2x=1

*

Bài 4: Giải phương trình sau:

*

*

Lời giải:

Đáp án: D

*

Vậy chọn D.

Bài 5: Nghiệm của phương trình 2(sinx + cosx) + sinxcosx = 2 là:

*

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2. Khi ấy

*

Ta gồm phương trình vẫn cho tất cả dạng:

*
*

Bài 6: Phương trình cos(πcos2x) = 1 có nghiệm là:

*

Lời giải:

Đáp án: B

cos⁡(π cos⁡2x )=1

⇔ π cos⁡2x=k2π

⇔ cos⁡2x=2k. Để pt tất cả nghiệm thì |2k| ≤ 1⇔|k| ≤ 1/2

Mà k nguyên ⇒ k=0

*

Bài 7: Tập nghiệm của phương trình tanx + cotx -2 = 0 là:

*

Lời giải:

Đáp án: B

ĐK: x ≠ kπ/2 (k ∈ Z)

tan⁡x + cot⁡x - 2=0

*

Bài 8: Phương trình 3sin2x + msin2x – 4cos2x = 0 bao gồm nghiệm khi:

A. M = 4 B. M ≥ 4 C. M ≤ 4 D. M ∈ R

Lời giải:

Đáp án: D

3sin2⁡x + m sin⁡2x - 4cos2⁡x=0

Xét cos⁡x=0. PT vô nghiệm

Xét cos⁡x≠0. Chia cả hai vế của PT đến cos2⁡x:

3 tan2⁡x+ 2m tan⁡x-4=0

Δ"=m2+12 > 0 ∀m

⇒ PT luôn có nghiệm cùng với ∀m.

Bài 9: Tập nghiệm của phương trình

*

*

Lời giải:

Đáp án: A

Ta gồm PT

*

⇔ 1 + sin⁡x + √3cos⁡x = 2

*

Bài 10: Giải phương trình: cos2x.tanx = 0.

*

Lời giải:

Đáp án: D

ĐK: x ≠ π/2+kπ (k ∈ Z)

*

*

Bài 11: Nghiệm của phương trình |sinx-cosx| + 8sinxcosx = 1 là:

*

Lời giải:

Đáp án: C

Đặt t = sinx - cosx. Đk: |t| ≤ √2. Lúc ấy

*

Ta có: |t| – 4(1 - t2)=1

*
*

Bài 12: Điều kiện của phương trình: cos3xtan5x = sin7x là:

*

Lời giải:

Đáp án: B

ĐKXĐ:

*

Bài 13: Tập nghiệm của phương trình 2cos25x + 3cos5x – 5 = 0 thuộc khoảng (0;π) là:

*

Lời giải:

Đáp án: B

2cos2⁡5x+3 cos⁡5x-5=0

*

Bài 14: Nghiệm của phương trình sin2x – sinxcosx = 1 là:

*

Lời giải:

Đáp án: A

sin2⁡x-sin⁡x cos⁡x=1 (1)

Xét cos⁡x=0. Ta gồm (1) ⇔ sin2⁡x=1 ⇔ x = π/2+kπ (k ∈ Z).

Xét cos⁡x≠0. Chia cả hai vế của PT đến cos2⁡x ta có:

tan2⁡x - tan⁡x = 1/cos2⁡x

⇔ tan2⁡x - tan⁡x = tan2⁡x + 1

⇔ tanx = -1

*

Bài 15: Điều kiện của phương trình:

*
là:

A. Cos2x ≠ 0 C. Cos2x ≥ 0

B. Cos2x > 0 D. Không xác minh tại đông đảo x.

Lời giải:

Đáp án: C

ĐKXĐ: cos2x ≥ 0. Lựa chọn C.

Bài 16: Tìm toàn bộ các quý hiếm thực của m đế phương trình sinx = m gồm nghiệm.

A. M ≠ 1 C. M ≠ -1

C. -1 ≤ m ≤ 1 D. M > 1

Lời giải:

Đáp án: C

sin⁡x = m bao gồm nghiệm ⇔|m| ≤ 1.

Bài 17: Một nghiệm của phương trình sin3x - cos3x = sinx –cosx là:

*

Lời giải:

Đáp án: A

PT ⇔ (sinx – cosx)( sin2x + cos2x + sinxcosx -1) = 0

*

Bài 18: Phương trình sinx = cosx có số nghiệm thuộc đoạn <0;π> là:

A.1 B.4 C.5 D.2

Lời giải:

Đáp án: A

Ta có sinx = cosx

*

Do x ∈ <0;π> nên k = 0. Vậy chỉ có 1 nghiệm của phương trình thuộc <0;π>.

Bài 19: Tập nghiệm của phương trình sin4x – 13sin2x + 36 = 0 là:

*

Lời giải:

Đáp án: D

sin4⁡x - 13sin2⁡x + 36 = 0

*

Bài 20: Nghiệm của phương trình cos2x - √3sin2x = 1 + sin2x là:

*

Lời giải:

Đáp án: D

cos2⁡x - √3 sin⁡2x = 1 + sin2⁡x (1)

Xét cos⁡x = 0. PT vô nghiệm

Xét cos⁡x ≠ 0. Chia cả 2 vế của PT mang lại cos2⁡x ta có:

*
*

*

Bài 21: Tập nghiệm của phương trình √3 sinx+cosx=1/cosx nằm trong (0;2π) là:

*

Lời giải:

Đáp án: A

ĐK: cosx ≠ 0.

*

Bài 22: Tìm toàn bộ các quý giá thực của m đế phương trình cosx - m = 0 tất cả nghiệm.

A. M ∈ (-∞,-1> C. M ∈ (1,+∞>

C. M ∈ <-1,1> D. M ≠ -1

Lời giải:

Đáp án: C

cos⁡x - m = 0 bao gồm nghiệm ⇔ cos⁡x = m tất cả nghiệm ⇔ |m| ≤ 1. Chọn C.

Bài 23: Tập nghiệm của phương trình tanx + cotx -2 = 0 là:

*

Lời giải:

Đáp án: B

*

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Ta tất cả phương trình vẫn cho bao gồm dạng:

*

Bài 24: Phương trình sin2x = 1 gồm nghiệm là:

*

Lời giải:

Đáp án: D

Hướng dẫn giải. Ta có: sin2x = 1 ⇔ 2x = π/2 + k2π ⇔ x = π/4 + kπ, k ϵ ℤ.

Từ đó suy ra lời giải là D.

Bài 25: Số bộ phận thuộc tập nghiệm của phương trình 4sinx = 1/sinx trong khoảng <0;2π}

A.2 B.4 C.6 D.8

Lời giải:

Đáp án: B

ĐK: sinx ≠ 0

4sin⁡x = 1/sin⁡x

⇔ sin2⁡x = 1/4

⇔ sin⁡x = ± 1/2

*

Bài 26: Số nghiệm của phương trình sin2x + 2sinxcosx + 3cos2x = 3 thuộc khoảng tầm (0; 2π)

A.1 B.2 C.3 D.4

Lời giải:

Đáp án: C

sin2⁡x + 2 sin⁡xcos⁡x + 3 cos2⁡x=3

Xét cos⁡x = 0. PT vô nghiệm

Xét cos⁡x ≠ 0. Chia cả hai vế của PT đến cos2⁡x ta có:

tan2⁡x + 2 tan⁡x+3 = 3 tan2⁡x+3

⇔ tan2⁡x - tan⁡x = 0

*

Bài 27: Phương trình (m + 2)sinx – 2mcosx = 2(m + 1) gồm nghiệm khi:

*

Lời giải:

Đáp án: A

PT đã mang đến

*

⇔ 4(m+1)2 ≤ (m+2)2 + 4m2

⇔ m2 + 4m ≥ 0

*

Bài 28: Số nghiệm của phương trình sin(2x – 40º) = 1 cùng với -180º 3x + sin3x = sinx + cosx là:

*

Lời giải:

Đáp án: B

cos3x + sin3x = sinx + cosx ⇔ (sinx + cosx) (1 – sinxcosx) = 0

*

Bài 30: Phương trình sin2 (x/3) = 1 tất cả nghiệm là:

*

Lời giải:

Đáp án: C

Ta có: sin2 (x/3) = 1 ⇔ cos2 (x/3) = 0 ⇔ x/3 = π/2 + kπ

*

*

Bài 31: trong vòng (0;2π) phương trình cot2 x-tan2 x=0 bao gồm tổng những nghiệm là:

A. π B.2π C. 3π D. 4π

Lời giải:

Đáp án: D

*

cot2⁡x-tan2⁡x=0

⇔ cot2⁡x= tan2⁡x

*

Trong (0,2 π) có các nghiệm: π/4 ,5π/4 ,3π/4 ,7π/4 cùng tổng những nghiệm là 4π. Lựa chọn D

Bài 32: Nghiệm của phương trình -2sin3x + 3cos3x – 3sinxcos2x – sin2xcosx = 0 là:

*

Lời giải:

Đáp án: A

-2 sin3x+3 cos3x-3 sin⁡x cos2⁡x-sin2⁡x cos⁡x=0

⇔ -2sin3x+3 cos3x-3 sin⁡x (2cos2⁡x-1 )-sin2⁡x cos⁡x=0 (1)

Xét cos⁡x=0. Ta bao gồm (1) ⇔-2sin3x+3 sin⁡x=0

*

Xét cos⁡x ≠ 0 chia hết cả hai vế của (1) mang đến cos3x. Ta có

-2tan3x+3-6 tan⁡x+3 tan⁡x (tan2⁡x+1)-tan2⁡x=0

⇔ tan3x-tan2⁡x-3 tan⁡x+3=0

*

Bài 33: Tập nghiệm của phương trình sin2x - √3sinxcosx + cos2x = 0 là:

*

Lời giải:

Đáp án: C

sin2⁡x-√3 sin⁡x cos⁡x+ cos⁡2x=0

*

Bài 34: Phương trình nào sau đây có tập nghiệm trùng với tập nghiệm của phương trình tanx = 1:

A.sinx = √2/2 B. Cosx = √2/2 C.cotx = 1 D. Cot2x = 1

Lời giải:

Đáp án: C

tan⁡x = 1 ⇒ cot⁡ x = 1

Bài 35: đến phương trình 3√2 (sinx+cosx)+2sin2x+4=0. Đặt t = sinx + cosx, ta được phương trình nào dưới đây?

A. 2t2 + 3√2 t+2=0 B. 4t2 + 3√2 t +4=0

C. 2t2 + 3√2 t-2=0 D. 4t2 + 3√2 t- 4=0

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình đang cho bao gồm dạng:

3√2 t + 2(t2-1) + 4 = 0 ⇔2t2+ 3√2 t + 2 = 0. Lựa chọn A.

Bài 36: Phương trình 2cosx - √3 = 0 có tập nghiệm trong khoảng (0;2π) là:

*

Bài 37: quý hiếm nào là nghiệm của phương trình tan3x.cot2x = 0

*

Lời giải:

Đáp án: D

*

tan⁡3x.cot⁡2x=0

*

Kết hợp với điều kiện ta lựa chọn D.

*

Bài 38: cho phương trình 5sin2x + sinx + cosx + 6 = 0. Trong các phương trình sau, phương trình làm sao không tương tự với phương trình đã cho?

*

Lời giải:

Đáp án: D

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình đang cho bao gồm dạng:

5(t2-1)+t+6=0 ⇔ phương trình vô nghiệm. Chọn D

Bài 39: Phương trình sin(πcos2x) = 1 gồm nghiệm là:

*

Lời giải:

Đáp án: D

Ta tất cả sin(πcos2x) = 1 ⇔ π cos2x = π/2 + k2π, k ∈ ℤ

*

⇔ cos2x = 50% +2k, k ∈ ℤ. Vì - 1 ≤ cos2x ≤ 1 cùng k ∈ ℤ đề xuất k = 0 và cho nên phương trình sẽ cho tương đương với

cos2x = một nửa ⇔ 2x = ±π/3 + k2π ⇔ x = ±π/6 + kπ. Vậy câu trả lời là D.

Bài 40: Số địa điểm biểu diễn những nghiệm của phương trình 2cos2x + 5cosx + 3 = 0 trên tuyến đường tròn lượng giác là?

A. 1 B. 2 C. 3 D. 4

Lời giải:

Đáp án: A

2cos2⁡x+5 cos⁡x+3=0

*

Bài 41: Phương trình nào sau đây có tập nghiệm trùng cùng với tập nghiệm của phương trình? sin2 x+ √3 sinxcosx=1

*

Lời giải:

Đáp án: D

sin2⁡x+√3 sin⁡x cos⁡x=1

*

Bài 42: Số nghiệm của phương trình sin2x + √3cos2x = √3 trên khoảng tầm (0, π/2) là?

A. 1 B. 2 C. 3 D. 4

Lời giải:

Đáp án: A

sin⁡2x+ √3 cos⁡2x=√3

*

Bài 43: Số nghiệm của phương trình là:

A.1 B.2 C.3 D. vô số.

Lời giải:

Đáp án: B

*

Bài 44: có bao nhiêu giá trị nguyên của thông số m để phương trình sinxcosx – sinx – cosx + m = 0 có nghiệm?

A.1 B. 2 C. 3 D.4

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình đang cho bao gồm dạng:

(t2-1)/2 - t + m = 0 ⇔ t2- 2t + 2m - 1 = 0 (2). Ta gồm ∆’ = 2 – 2m.

Để phương trình vẫn cho có nghiệm thì phương trình (2) phải bao gồm nghiệm cùng trị hoàn hảo và tuyệt vời nhất của nghiệm nhỏ tuổi hơn √2

*

m nguyên bắt buộc m = 1.

Bài 45: Phương trình cos(x/2) = - 1 gồm nghiệm là:

A.x = 2π + k4π, k ∈ ℤ.

B.x = k2π, k ∈ ℤ.

C.x = π + k2π, k ∈ ℤ.

D.x = 2π + kπ, k ∈ ℤ.

Lời giải:

Đáp án: A

cos(x/2) = - 1 ⇔ x/2 = π + k2π ⇔ x = 2π + k4π. Lựa chọn A

Bài 46: Tìm tất cả các quý hiếm thực của tham số m nhằm phương trình tanx + mcotx = 8 gồm nghiệm.

A. m > 16 B.m 2⁡x + 8 tan⁡x + m = 0

Δ" = 16-m. Để pt có nghiệm thì Δ" ≥ 0 ⇔ m ≤ 16.

Bài 47: đến phương trình cos2 x-3sinxcosx+1=0. Mệnh đề nào sau đấy là sai?

A. x=kπ ko là nghiệm của phương trình.

B. Nếu chia hai vế của phương trình đến cos2 x thì ta được phương trình tan2 x-3tanx+2=0.

C. Nếu phân tách 2 vế của phương trình cho sin2 x thì ta được phương trình 2cot2 x+3cotx+1=0.

D. Phương trình vẫn cho tương đương với cos2x-3sin2x+3=0.

Lời giải:

Đáp án: C

Xét câu A :

*

⇒ PT ⇔ 1-0+1=0 (vô lý)

Vậy câu A đúng

Xét câu B : phân chia cho cos2⁡x. Ta tất cả

*

⇔ tan2⁡x-3 tan⁡x + 2 = 0. B đúng

Xét câu C. Phân chia cho sin2⁡x ta có

*

⇔ 2cot2⁡x-3 cot⁡x + 1 = 0. Sai

Chọn C

*

Bài 48: Tìm tất cả các quý giá thực của tham số m để phương trình cosx + sinx = √2(m2 + 1) vô nghiệm.

A. m ∈ (-∞;-1)∪(1; +∞) B. m ∈ <-1,1>

C. m ∈ (-∞; +∞) D. m ∈ (-∞;0)∪(0; +∞)

Lời giải:

Đáp án: D

*

Để PT vô nghiệm thì m ≠ 0. Chọn D.

Bài 49: Tổng những nghiệm của phương trình tan5x – tanx = 0 bên trên nửa khoảng

A. π B.2 π C. 3π/2 D. (5 π)/2.

Lời giải:

Đáp án: C

*

Bài 50: trường đoản cú phương trình 5sin2x – 16(sinx – cosx) + 16 = 0, ta tìm kiếm được sin(x - π/4) có giá trị bằng:

A. √2/2 B. -√2/2 C. 1 D. ± √2/2

Lời giải:

Đáp án: A

*

Bài 51: Phương trình cos23x = 1 gồm nghiệm là:

A.x = kπ, k ∈ ℤ.

B.x = kπ/2, k ∈ ℤ.

C.x = kπ/3, k ∈ ℤ.

D.x = kπ/4, k ∈ ℤ.

Lời giải:

Đáp án: C

cos23x = 1 ⇔ 3x = kπ ⇔ x = kπ/3 (k ∈ Z). Chọn C.

Bài 52: Tìm tất cả các giá trị thực của thông số m nhằm phương trình cos2x – (2m + 1)cosx + m + 1 = 0 gồm nghiệm trên khoảng chừng (π/2, 3π/2).

A. -1 2⁡x (2m+1) cos⁡x+m=0

*

Để PT bao gồm nghiệm bên trên (π/2, 3π/2)thì thì cosx 2 x+(m-2)sin2x+3cos2 x=2 gồm nghiệm?

A. 16 B. 21 C. 15 D. 6

Lời giải:

Đáp án: C

Xét cos⁡x = 0. Lúc ấy PT ⇔ 11.1=2 (vô lý)

Xét cos⁡x ≠ 0. Phân chia cho cos2⁡x . Ta được :

11 tan2⁡x + 2(m-2) tan⁡x + 3 = 2 tan2⁡x + 2

⇔ 9tan2⁡x + 2(m-2) tan⁡x + 1 = 0

Để PT bao gồm nghiệm ⇔ ∆"=(m-2)2-9 = m2-4m-5 ≥ 0

*

m ∈ <-10,10>,m nguyên ⇒ bao gồm 15 giá chỉ trị. Lựa chọn C.

Xem thêm: Những Bài Văn Hay Lớp 9 - Những Bài Văn Mẫu, Bài Tập Làm Văn 9 Hay Nhất

Bài 54: tất cả bao nhiêu giá trị nguyên của tham số m ở trong đoạn <-10; 10> nhằm phương trình ( m + 1)sinx – mcosx = 1 – m có nghiệm.