KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊNNĂM HỌC 2011 - 2012

Môn: TOÁN (Vòng 1)Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Câu I.

Bạn đang xem: Đề thi chuyên khoa học tự nhiên 2012

1) Giải hệ phương trình:

*

2) Giải phương trình:

*

Câu II.

1) Chứng minh rằng không tồn tại các bộ ba số nguyên (x, y, z) thỏa mãn đẳng thức: x4 + y4 = 7z4 + 5

2) Tìm tất cả các cặp số nguyên (x, y) thỏa mãn đẳng thức: (x + 1)4 - (x - 1)4 = y3


Câu III.

Cho hình bình hành ABCD với góc BAD o . Đường phân giác của góc  BCD cắt đường tròn ngoại tiếp tam giác BCD tại O khác C. Kẻ đường thẳng (d) đi qua A và vuông góc với CO. Đường thẳng (d) lần lượt cắt các đường thẳng CB, CD tại E, F.

1) Chứng minh rằng ∆OBE = ∆ODC.

2) Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác CEF.

3) Gọi giao điểm của OC và BD là I, chứng minh rằng IB.BE.EI = ID.DF.FI

Câu IV.

Với , x y là những số thực dương, tìm giá trị nhỏ nhất của biểu thức:

*

Môn: TOÁN (Vòng 2)Thời gian làm bài: 150 phút (không kể thời gian giao đề)

Câu I.

1) Giải phương trình:

*


2) Giải hệ phương trình:

*

Câu II.

1) Với mỗi số thực a ta gọi phần nguyên của a là số nguyên lớn nhất không vượt quá a và ký hiệu là . Chứng minh rằng với mọi số nguyên dương n, biểu thức

*
không biểu diễn được dưới dạng lập phương của một số nguyên dương.

2) Với x, y, z là các số thực dương thỏa mãn đẳng thức xy + yz + zx = 5, tìm giá trị nhỏ nhất của biểu thức:

*

Câu III.

Cho hình thang ABCD với BC song song AD. Các góc BAD và CDA là các góc nhọn. Hai đường chéo AC và BD cắt nhau tại I. P là điểm bất kỳ trên đoạn thẳng BC (P không trùng với B, C). Giả sử đường tròn ngoại tiếp tam giác BIP cắt đoạn thẳng PA tại M khác P và đường tròn ngoại tiếp tam giác CIP cắt đoạn thẳng PD tại N khác P.


1) Chứng minh rằng năm điểm A, M, I, N, D cùng nằm trên một đường tròn. Gọi đường tròn này là (K).

2) Giả sử các đường thẳng BM và CN cắt nhau tại Q, chứng minh rằng Q cũng nằm trên đường tròn (K)

3) Trong trường hợp P, I, Q thẳng hàng, chứng minh rằng

*

Câu IV.

Xem thêm:
Global Brand Là Gì ? Tìm Hiểu Các Global Brand Hiện Có Ở Việt Nam

Giả sử A là một tập con của tập các số tự nhiên ℕ. Tập A có phần tử nhỏ nhất là 1, phần tử lớn nhất là 100 và mỗi x thuộc A (x ≠ 1) luôn tồn tại a, b cũng thuộc A sao cho x = a + b (a có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất.


Chia sẻ bởi:
*
Nguyễn Thu Ngân
slovenija-expo2000.com
Mời bạn đánh giá!
Lượt tải: 2.018 Lượt xem: 3.575 Dung lượng: 616 KB
Liên kết tải về

Link slovenija-expo2000.com chính thức:

Đề thi tuyển sinh lớp 10 THPT chuyên ĐH Khoa học tự nhiên năm 2011 - 2012 slovenija-expo2000.com Xem
Sắp xếp theo Mặc địnhMới nhấtCũ nhất
*

Xóa Đăng nhập để Gửi
Tài liệu tham khảo khác
Chủ đề liên quan
Mới nhất trong tuần
Tài khoản Giới thiệu Điều khoản Bảo mật Liên hệ Facebook Twitter DMCA