Các dạng toán phương trình lượng giác, cách thức giải và bài tập trường đoản cú cơ bản đến cải thiện - toán lớp 11

Sau khi làm quen với các hàm lượng giác thì những dạng bài bác tập về phương trình lượng giác chính là nội dung tiếp theo sau mà các em vẫn học trong chương trình toán lớp 11.

Bạn đang xem: Giải pt lượng giác


Vậy phương trình lượng giác có các dạng toán nào, phương pháp giải ra sao? chúng ta cùng tò mò qua nội dung bài viết này, đồng thời vận dụng các phương pháp giải này để gia công các bài bác tập từ cơ bạn dạng đến cải thiện về phương trình lượng giác.

I. Lý thuyết về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một trong những cung thỏa sinα = a, khi ấy phương trình (1) có những nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α thỏa mãn nhu cầu điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Lúc đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có các nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 trong những cung thỏa cosα = a, lúc ấy phương trình (2) có những nghiệm là:

 x = ±α + k2π, ()

- Nếu α thỏa mãn nhu cầu điều khiếu nại 0 ≤ α ≤ π cùng cosα = a thì ta viết α = arccosa. Khi đó những nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có những nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay điều kiện của phương trình (3) là: 

*

- Nếu α vừa lòng điều kiện

*

- Nếu α thỏa mãn điều kiện

*

II. Các dạng toán về Phương trình lượng giác và phương thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng những công thức nghiệm tương ứng với từng phương trình.

* ví dụ 1 (Bài 1 trang 28 SGK Đại số với Giải tích 11): Giải những phương trình sau:

a) b)

b)

d)

*

* giải thuật bài 1 trang 28 SGK Đại số và Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* ví dụ 2: Giải các phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một số trong những phương trình lượng giác chuyển được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng các công thức biến đổi để lấy về phương trình lượng giác đã cho về phương trình cơ bản như Dạng 1.

* lấy ví dụ 1: Giải những phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* lưu ý: Bài toán trên vận dụng công thức:

 

*
*

 

*
*

* lấy ví dụ 2: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* giữ ý: bài toán vận dụng công thức biến đổi tích thành tổng:

 

*

 

*

 

*

* ví dụ như 3: Giải những phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu ý: Bài toán bên trên có vận dụng công thức biến đổi tổng các thành tích và bí quyết nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình bậc nhất có một hàm con số giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* lấy ví dụ 1: Giải những phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai bao gồm một hàm số lượng giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta gồm phương trình at2 + bt + c = 0.

* lưu ý: Khi đặt t=sinx (hoặc t=cosx) thì phải bao gồm điều kiện: -1≤t≤1

* ví dụ như 1: Giải những phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ cùng với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 buộc phải loại

*
*
 
*

* Chú ý: Đối cùng với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Cách thức giải như sau:

 - Ta có: cosx = 0 chưa phải là nghiệm của phương trình do a≠0,

 Chia 2 vế mang đến cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - nếu phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta thế d = d.sin2x + d.cos2x, cùng rút gọn mang về dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ cách 1: Chia nhị vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ giải pháp 2: Sử dụng công thức sinx cùng cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 đối với t.

* lưu giữ ý: PT: asinx + bcosx = c, (a≠0,b≠0) tất cả nghiệm khi c2 ≤ a2 + b2

• Dạng tổng quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu lại ý: bài toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng với sinx và cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Ký Hiệu Mfg Là Gì - Định Nghĩa, Khái Niệm

* Phương pháp

- Đặt t = sinx + cosx, lúc đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu ý: 

*
 nên đk của t là: 

- cho nên vì vậy sau khi tìm được nghiệm của PT (*) buộc phải kiểm tra (đối chiếu) lại đk của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 không hẳn là PT dạng đối xứng nhưng lại cũng rất có thể giải bằng cách tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải các phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài tập về các dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số với Giải tích 11): Với đông đảo giá trị như thế nào của x thì giá trị của những hàm số y = sin 3x cùng y = sin x bởi nhau?

° giải mã bài 2 trang 28 SGK Đại số và Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài xích 3 (trang 28 SGK Đại số 11): Giải những phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải mã bài 3 trang 28 SGK Đại số và Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT bao gồm nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT bao gồm nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số với Giải tích 11): Giải phương trình 

° giải mã bài 3 trang 28 SGK Đại số với Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến đây ta cần đối chiếu với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT có họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số cùng Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° lời giải bài 1 trang 36 SGK Đại số với Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT gồm tập nghiệm 

*

* bài 2 (trang 36 SGK Đại số với Giải tích 11): Giải những phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° giải mã bài 2 trang 36 SGK Đại số với Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc đó PT (1) trở thành: 2t2 – 3t + 1 = 0