Nguyên hàm là gì? tính chất của nguyên hàm? Bảng bí quyết nguyên hàm tương đối đầy đủ và mở rộng lớp 12 của hàm số cơ bản? giải pháp học bí quyết nguyên hàm từng phần và nâng cao? cụ nào là nguyên hàm căn u?… vào nội dung nội dung bài viết dưới đây, slovenija-expo2000.com sẽ giúp bạn tổng hợp kỹ năng về chủ đề nguyên hàm tương tự như bảng công thức nguyên hàm, cùng tò mò nhé!


Nguyên hàm là gì?

Hàm số (F_(x)) được gọi là nguyên hàm của hàm số (f_(x)) bên trên (a;b) nếu (F’_(x) = f_(x))


Ví dụ:

Hàm số (y = x^2) là nguyên hàm của hàm số (y = 2x) trên (mathbbR) bởi vì ((x^2)’ = 2x)Hàm số (y = ln x) là nguyên hàm của hàm số (y = frac1x) trên ((0,+infty )) vày ((ln x)’ = frac1x)

*

Tính hóa học của nguyên hàm

((int f_(x)dx)’ = f_x)(int a.f_(x)dx = a.int f_(x)dx)(int left < f_(x) pm g_(x) ight >dx = int f_(x)dx pm int g_(x)dx)

Bảng công thức nguyên hàm không hề thiếu và mở rộng

Nguyên hàm của các hàm số sơ cấp

Nguyên hàm của những hàm số đúng theo

u = u(x)

Lũy thừa(int dx = x + C)(int du = u + C)
(int x^a dx = fracx^a + 1a + 1 + C)(int u^a dx = fracu^a + 1a + 1 + C)
Mũ logarit(int fracdxx = ln left ,,left( x e 0 ight))(int fracduu = ln left ,,left( x e 0 ight))
(int e^xdx = e^x + C)(int e^udx = e^u + C)
(int {a^xdx = fraca^xln a + C,,left( {0 (int {a^udu = fraca^uln a + C,,left( {0
Lượng giác(int cos xdx = sin x + C)(int cos udu = sin u + C)
(int sin xdx = – cos x + C)(int sin udu = – cos u + C)
(int fracdxsin x = ln left| an fracx2 ight| + C)(int fracdusin u = ln left| an fracu2 ight| + C)
(int fracdxcos x = ln left| an left( fracx2 + fracpi 4 ight) ight| + C)(int fracducos u = ln left| an left( fracu2 + fracpi 4 ight) ight| + C)
(int fracdxcos ^2x = an x + C)(int fracducos ^2u = an u + C)
(int fracdxsin ^2x = – cot x + C)(int fracdusin ^2u = – cot u + C)
(int cot xdx = ln left | sinx ight | + C)(int cot udu = ln left | sinu ight | + C)
(int an xdx = -ln left | cos x ight | + C)(int an udu = -ln left | cos u ight | + C)
Căn thức(int fracdxsqrtx = 2sqrtx + C)(int fracdusqrtu = 2sqrtu + C)
(int sqrtxdx = fracnn+1sqrtx^n+1 + C)(int sqrtudu = fracnn+1sqrtu^n+1 + C)
(int fracdxsqrtx^2pm a = ln left | x + sqrtx^2pm a ight | + C)(int fracdusqrtu^2pm a = ln left | u + sqrtu^2pm a ight | + C)
(int fracdxsqrta^2 – x^2 = arcsin fracxa + C)(int fracdusqrta^2 – u^2 = arcsin fracua + C)
(int fracxdxsqrt x^2 pm a^2 = sqrt x^2 pm a^2 + C)(int fracudusqrt u^2 pm a^2 = sqrt u^2 pm a^2 + C)
(int sqrt x^2 pm a^2 dx = fracx2sqrt x^2 + a^2 pm fraca2ln left| x + sqrt x^2 pm a^2 ight| + C)(int sqrt u^2 pm a^2 du = fracu2sqrt u^2 + a^2 pm fraca2ln left| u + sqrt u^2 pm a^2 ight| + C)
Phân thức hữu tỷ(int fracdxx^2 = -frac1x + C)(int fracduu^2 = -frac1u + C)
(int fracdxx^n = frac-1(n – 1)x^n – 1 + C)(int fracduu^n = frac-1(n – 1)u^n – 1 + C)
(int fracdxx^2 – a^2 = frac12aln left | fracx – ax + a ight | + C)(int fracduu^2 – a^2 = frac12aln left | fracu – au + a ight | + C)
(int fracdxx^2 + a^2 = frac1aarctan fracxa + C)(int fracduu^2 + a^2 = frac1aarctan fracua + C)
(int fracxdxx^2 pm a^2 = frac12ln left| x^2 pm a^2 ight| + C)(int fracuduu^2 pm a^2 = frac12ln left| u^2 pm a^2 ight| + C)

Trên phía trên là nội dung bài viết tổng hợp kiến thức về nguyên hàm với bảng phương pháp nguyên hàm vừa đủ và mở rộng lớp 12. Trường hợp có băn khoăn hay thắc mắc cũng tương tự góp ý cho bài viết về chủ thể bảng phương pháp nguyên hàm đầy đủ và mở rộng, chúng ta để lại ý kiến tại phần bình luận dưới nha. Trường hợp thấy giỏi thì share nhé Rate this post